
On the Construction of Submodule
Specifications and Communication
Protocols
PHILIP MERLIN
The Technion

GREGOR V. BOCHMANN

University of Montreal

The problem of elaborating the specification for the submodules of a system is considered. A new
method for the construction of submodule specifications is described. If the system is to consist of n
submodules and the system as well as (n - 1) submodules are specified, then the method described
determines the specification of the additional n t h submodule. A formula is given which defines the
specification of the additional submodule in the general case where module specifications are given in
terms of sets of possible execution sequences, and interaction occurs when several modules participate
in the execution of an atomic interaction. For the restricted context of finite-state machines, a
constructive algorithm for the evaluation of the formula is given. The use of this design method is
demonstrated by examples, including a simple communication protocol involving error detection and
retransmission. Possible applications in other areas, as well as remaining problems, are indicated.

Categories and Subject Descriptors: C.2.2 [C o m p u t e r - C o m m u n i c a t i o n Networks] : Network Pro-
tocols; D.2.1 [Sof tware Engineer ing] : Requirements~Specifications--methodologies; D.2.2 [Soft-
w a r e Engineer ing] : Tools and Techniques--modules and interfaces; D.4.4 [O p e r a t i n g Systems] :
Communications Management

General Terms: Design, Languages

Additional Key Words and Phrases: Communication protocols, distributed system design, module
decomposition, stepwise refinement

I wish to dedicate this paper to my friend and colleague Philip Merlin. The work described here was
done shortly before his unexpected death. In writing this paper, I remember the discussions we had
on this exciting topic. I respect Philip Merlin very much and hope that this paper lives up to his
expectations.

1. INTRODUCTION

T h e p r o b l e m o f d e s i g n i n g s y s t e m s w i t h p a r a l l e l p r o c e s s e s h a s d r a w n m u c h

a t t e n t i o n . S y s t e m s f o r d i s t r i b u t e d p r o c e s s i n g , d a t a c o m m u n i c a t i o n s , p r o c e s s

c o n t r o l , a n d g e n e r a l o p e r a t i n g s y s t e m s a r e c o n s i d e r e d . B e c a u s e o f t h e c o m p l e x i t y

The work described here was performed at the University of Montreal and was partially supported by
the Natural Sciences and Engineering Council of Canada. This paper was written during a sabbatical
leave at Stanford University partially supported by the Advanced Research Projects Agency under
contract MDA903-79-C-0680.
Authors' addresses: P. Merlin, deceased; G. V. Bochmann, D6partement d'informatique et de re-
cherche op6rationneile, Universit6 de Montr6al, Case postale 6128, Succursale "A," Montr6al, Qu6bec
H3C 3J7, Canada.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1983 ACM 0164-0925/83/0100-0001 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983, Pages 1-25.

2 P. Merlin and G. V. Bochmann

of many of these systems, good design methods are important. The usual approach
to the design of parallel systems involves the important step of dividing the
overall system into a number of separate submodules which operate in parallel
and interact in some well-defined way. Usually, this step is repeated for each of
the submodules so obtained, which leads to a stepwise refinement of the system
specification.

At each step, a given module is subdivided into several submodules that
together satisfy the specification of the given module. Usually, the design of the
submodules and the determination of their specification is completely left to the
designer of the system. If the specifications are sufficiently formal, he may be
assisted by some automated system in verifying that the submodule specifications
conform to the specification of the given module.

This paper presents a new approach which assists in the elaboration of the
submodule specifications during each single step of the refinement process. Given
a complete specification of a given module and the specifications of some
submodules, the method described below provides the specification of an addi-
tional submodule that, together with the other submodules, will provide a system
that satisfies the specification of the given module (if such an additional sub-
module is possible}. This is indicated in Figure la, which shows the construction
of a module Mo (the system) out of three submodules M1, M2, and M3. If the
specifications for Mo, M1, and M2 are given, then the specification for M3 is found
by our method.

We think that this approach is useful for the design of a distributed system.
We note that the method finds the most general specification possible for the
additional submodule. The existing specifications may also be checked for con-
sistency. If there are any inconsistencies, no appropriate additional submodule
exists, and the submodule determined by our method will not provide, together
with the existing submodules, all the aspects of behavior specified for the system.
The method should be complemented with a method for determining whether all
specified behaviors are realized and for detecting possible deadlocks and useless
operations that may be included in the general specification obtained for the
additional submodule.

A particular application of this method lies in the design of communication
protocols. In this case, we assume that the specifications for the communication
services to be provided by the protocol and by the underlying system layer,
respectively, are given. We also assume that the specification for one of the
protocol submodules is given. Then our method provides a specification for the
other protocol submodule automatically (see Figure lb).

The construction method described here is independent of any particular
specification language that may be used for the specification of the modules and
submodules. The method is based on a model of parallel systems, described in
Section 2, in which a module specification is given as a set of possible execution
sequences. For practical purposes, a language is needed for specifying such sets
of sequences. Different specification languages may be used. For demonstrating
the ideas, we use in this paper a finite-state- (FS-)oriented specification language.

Related work is described by Cerny and Marin [6, 7], who apply a similar
method to the design and testing of logical circuits, and by Zafiropulo et al. [16],
who describe an interactive protocol design method. In contrast to ours, however,
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

On the Construction of Submodule Specifications 3

MO

M2

(a)

M3 M1

MO qp qp

M4 M2
protocol ~ protocol ~ protocol

su bmodul e submodul e

M3
underlying system layer

(b)

Fig. 1. (a) The structure of a module (system) /140 consisting of three
submodules. (b) The structure of a communicat ion subsystem involving a

communication protocol.

their method assumes that all "sending" actions of both interacting modules are
provided by the designer, while the "receiving" actions are found automatically.
No checks against specific service specifications are made.

2. A MODEL FOR SPECIFYING MODULES AND THEIR INTERACTION

This section gives an informal explanation of the descriptive model for system
and submodule specifications used in this paper. Section 3 describes the method
for constructing submodule specifications and explains its results. A formal
description of this topic and larger examples are given in the following sections.

2.1 Module Specification

We assume that a module Mi is characterized by a certain set Vi of externally
visible "operations" that are executed by the module. The activity of the module
will result in some particular execution sequence over these operations. The
module specification determines the set of all possible execution sequences, which

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

4 P. Merlin and G. V. Bochmann

Fig. 2. Trans i t ion d iagram for a BUFFER module . (Note: T h e shaded
s ta te is nonaccepting.)

put

put

c

Fig. 3. Trans i t ion d iagram for a 3-CYCLE module . (Note:
Nonaccept ing s ta tes and the t rans i t ions leading to t h e m are no t

shown.)

we write S/. We note that nothing is assumed about the internal structure of the
module or the manner in which the specified execution sequences may be realized.

These assumptions are consistent with many specification methods described
in the literature, such as Parnas' information hiding or the use of abstract data
types. As far as a given module is concerned, its operations are considered atomic
actions, in the sense that they may be assumed to have no extension in time. We
note that the overlapping in time of two simultaneous actions may be modeled
by considering the beginning and the termination of these actions as atomic. Our
model is particularly related to specification methods based on execution se-
quences, such as those described in [1, 5, 11].

We demonstrate the concepts explained in this paper with examples based on
the modules defined in Figures 2 and 3. We use a finite-state specification
language here, but other specification languages may be used with our construc-
tive approach. Figure 2 shows a transition diagram for an FS machine defining
the possible operation sequences of a B U F F E R module. The possible operations

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

On the Construction of Submodule Specifications 5

are P U T and GET. The possible operation sequences of the module are those
sequences for which the diagram provides a path to an accepting state. The
resulting behavior may also be characterized by the regular expression
(PUT GET)*. It is the behavior of a queue of maximum length one. Figure 3
shows the transition diagram for a 3-CYCLE module which executes the events
A, B, and C in cyclic order. Transitions to nonaccepting states, similar to those in
Figure 2, are not shown but are implied by Figure 3.

2.2 Module Interaction

We now consider several modules running in parallel. In the case of no interaction
between the modules, the possible execution sequences of the overall system are
obtained by arbitrary interleaving (shuffling) of the execution sequences of the
individual modules. Interaction is introduced by requiring that certain operations
of different modules be executed jointly. The joint execution of such a group of
operations is considered an atomic (indivisible) action. An operation that is part
of such an action cannot be executed alone, but only in conjunction with the
other operations. For such a group of operations to occur, it is necessary that
each operation be possible according to the specification of the respective module.
We say that the operations of such an action are "directly coupled" [3] and that
the operations or the respective modules "participate" in the action. The joint
execution of the directly coupled operations may then be called an "interaction."

We note the consistency of these definitions with many existing methods for
specifying module interactions.

(1) For example, the operations of calling a procedure of a different module
and the execution of that procedure by that module may be considered directly
coupled operations, provided that the execution of the procedure may be consid-
ered an atomic action.

(2) Another example is given by the exchange of messages between modules.
The events of sending and receiving may be considered directly coupled opera-
tions if the delay between the sending and the receiving may be ignored. This is,
for instance, the case when the receiver or the sender always waits for the other
to be ready [8]. In the case that the message exchange delay between modules is
not negligible, collisions between messages sent in opposite directions may occur.
Discussion of such collisions is outside the scope of this paper (see, for example,
[16]). We note that under certain regularity conditions [2] the delays have no
influence on the overall behavior of the system. Collisions may also be modeled
by a particular submodule that represents the "message transmission medium"
to which the other modules are directly coupled.

(3) The concept of direct coupling also fits into the framework of hardware
specification, where the setting of a given circuit to a particular value by one
module and the sensing of this value by another module may be considered
directly coupled operations.

We believe that the simplicity of this concept (symmetry between the inter-
acting modules, and close synchronization) makes it particularly suitable for
many applications, including the submodule construction method discussed be-
low. Formal models for similar module interactions are described in [12, 13].

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

6 • P. Merlin and G. V. Bochmann

M1 .bl @

M1

M2. b

M l . c / @ \M2.c

Fig. 4. Petr i ne t descript ion of two directly coupled 3-CYCLE modules .

In order to describe which operations of different modules are directly coupled,
one needs some "connection specification language" (see, for example, [10]). We
use in the following the notation "A @ B" to indicate that the operations A and
B are directly coupled. We write "Mi × Mj" for the system consisting of the two
modules Mi and Mj that interact through the direct coupling of some of their
operations.

As an example, we consider two modules M1 and M2 which are both 3-CYCLE
modules. They interact through the direct coupling of the operations M1.C with
M2.C and M~ .B with/142.A (where "/141 .C" stands for "the operation C of module
MI," etc.). The resulting system has the atomic actions M1.A, (M1.B@M2.A),
(M1.C@M2.C), and M2.B. The specification of the 3-CYCLE module of Figure
3 implies that these operations must be executed cyclically as defined by the
regular expression (M1.A (M1.B @M2.A) (M1.C@M2.C) M2.B)*. A system de-
scription in the form of a Petri net is shown in Figure 4. This example shows how
directly coupled finite-state machines may be modeled by Petri nets, a particular
case of Prinoth's method for describing multiprocess systems [14].

Another example is given by considering two modules M~ and M2 that are a
BUFFER and a 3-CYCLE module, respectively. They interact through the direct
coupling of the events PUT and A. The atomic actions of the resulting System
are GET, PUT A, B, and C. Given the specification of/I//1 and M2 in Figures 2
and 3, the possible operation sequences of the system are shown in Figure 5,
where the symbol "X" stands for "PUT@A." This example exhibits some form
of nondeterminism due to different possible interleavings of operations.

Figure 5 indicates how a specification of a coupled system may be obtained in
the case that the specifications are given in a FS-oriented language. Given two
FS machines specifying the possible operation sequences of the modules M1 and

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

On the Construction of Submodule Specifications

C

7

get I \ / get l I get

\ c

get get,X get,X

Fig. 5. Transition diagram for a system consisting of directly
coupled B U F F E R and 3-CYCLE modules. (Note: (i, j) represents
a system state where the B U F F E R module is in state i and the 3-
CYCLE module is in state j ; X stands for the coupled transition.}

M2 separately, an FS machine M0 specifying the possible operation sequences of
the modules directly coupled is constructed as follows:

(1) The states of M0 have the form <zl, z2) where zl and z2 are states of M~
and M2, respectively.

(2) There is a transition from (zl, z2) to (zl , z~) on the input operation e if

a. e is uncoupled and in V1, and there is an "e" transition from zl to zl in M1,
and z2 = z ~;

b. e is uncoupled and in V~, and there is an "e" transition from z2 to z~ in M2,
and zl = zl; or

c. the operation is coupled and of the form Ml.e~@M2.e2, and there is an "e~"
transition from z~ to zl in M1 and an "e2" transition from z2 to z~ in M2.

(3) A state <z~, z2) is accepting if both states Zl and z2 are accepting in their
respective FS machines.

Applied to the example of two coupled 3-CYCLE modules considered above,
this algorithm yields the transition diagram of Figure 6, which shows the cyclic
execution order mentioned above.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

8 P. Merlin and G. V. Bochmann

~ , M I .b @ M2.a I ~

Fig. 6.

12. b

M] .a

MI .a

M2. b

Transit ion diagram for a sys tem consisting of two directly
coupled 3-CYCLE modules.

2.3 Abst ract ions

Since a group of directly coupled operations are considered an atomic action, we
do not need to distinguish among them, or among the contributions of the
different participating modules. To simplify the following discussions we assume
that a renaming has been performed such that all atomic actions in the system
have distinct names. We assume a vocabulary V of names, where each name
identifies exactly one atomic action in the system, that is, either a particular
uncoupled operation of a particular module, or a particular group of directly
coupled operations of a certain set of interacting modules. For example, in the
case of the two coupled 3-CYCLE modules considered above, the following
renamings may be applied:

M1.A becomes A;
M1.B @ M2.A becomes D;

M2.B becomes B;
M1. C @ M2.C becomes E.

The resulting set of atomic actions is V = 1 {A, D, B, E }.
In the following we write Vi for the set of atomic actions in which the module

Mi participates. In the example above, for instance, V1 = {,4, D, E} and V2 = {D,
B, E}. Clearly, we always have that V = Ui Vi and that Vi N Vj is the set of
atomic actions in which the modules Mi and Mj (and possibly others) participate.

While the process of stepwise refinement leads to more and more detailed
specifications, involving an increasing number of different modules, operations,
and atomic actions, the verification of a refinement step involves the opposite,

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

On the Construction of Submodule Specifications • 9

namely, abstracting from the submodule structure of a given module and ignoring
all those operations of the submodules that are not visible at the level of the
module specification. In the framework of our model, abstraction is obtained by
projections, as explained below.

Given a specification of a system of several interacting modules involving a
certain set V of atomic actions and a subset of actions considered "relevant," the
"projection onto the relevant actions" of the specification is obtained by deleting
in each of the possible execution sequences the actions that are not relevant. In
the following, we often consider the projection for which the relevant actions are
those in which a given module Mi participates, that is, Vi. We write "pi" for this
projection.

As an example, we consider again the two coupled 3-CYCLE modules. Applying
the projectionpl yields the specification (A D E) *, which is isomorphic (i.e., equal
except for renaming) to M1 (which must be so, of course). Applying a projection
keeping as relevant actions only A and B yields the specification (A B)*, which
is isomorphic to a B U F F E R module. This shows that a B U F F E R module may
be implemented by two interacting 3-CYCLE modules. We note that in this case
the "interactions" between the two modules are considered irrelevant, but, clearly,
their existence is a determining factor for the behavior of the system.

In the case of the FS specification language, which we use for our examples,
the projection of a specification is performed by deleting the irrelevant action
symbols in the regular expression or by replacing, within the transition diagram
of the module, all transitions on irrelevant actions by a spontaneous transition,
and subsequently simplifying the diagram, if necessary.

3. CONSTRUCTION OF SUBMODULE SPECIFICATIONS

We now explain a method for constructing submodule specifications. For simplic-
ity, we assume the case of a system made up of two submodules. The general case
can be reduced to this case, as shown in Section 4.

We want to solve the following problem: Given the specification of a module or
system M0 and of one of the submodules, say M1, we want to find a submodule
M2 such that the system consisting of the interacting submodules M1 and M2
satisfies the specification for Mo. As far as the operations of the different modules
are concerned, the interaction model described above implies the following: Let
V0, V1, and V2 be the sets of atomic actions in which the modules Mo, M1, and
M2, respectively, participate. (We assume that the correspondence between these
actions and the operations of M0 and M1 is given.) V0 and V1 are determined from
the specifications of M0 and M~. It is clear that those actions of Vo that are not in
V1 must be in V2, because otherwise they could never be executed by the
interacting modules M1 and M2. Also, V2 must include some actions of V1, because
otherwise there would be no interaction between the two modules. On the other
hand, any action of M2 in which neither M0 nor M~ participates is not relevant to
our considerations, because we may abstract from it without affecting the possible
interactions of the module M2. Therefore, if we exclude the possibility of actions
in which more than two modules participate, we may deduce the set V2 of actions
in which the unknown module M2 participates to be

v~ = (Vo- v1) u (v~ - Vo)
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

~ e t
b

10 • P. Merlin and G. V Bochmann

Fig. 7. Transition diagram obtained from Figure 5 by projection,
ignoring the X-transition considered irrelevant.

where " - " means set subtraction; that is, (Vo - V1) is the set of all actions that
are in Vo but not in V1.

As far as the possible operation sequences are concerned, it is shown in the
following section that a specification for an additional module M2, if it exists, is
given by the formula

82 =p2(So × 81) - p2($o x $1) (1)

where So is the complement of So, that is, the set of all execution sequences over
operations in Vo, but in an order that is not possible according to the specifica-
tion So.

We demonstrate this formula by the example considered above. We have seen
that a BUFFER module could be implemented by two 3-CYCLE modules. Let
us assume that the specification So for our system M0 is the BUFFER specification
of Figure 2 and that we have decided that one of the submodules M1 is a 3-
CYCLE module executing the operations V1 = (PUT, B, C}, with the possible
execution sequences defined by (PUT B C)*. Following the considerations above,
we find that M2 should execute the operation GET and should interact with M1
through direct coupling with the actions B and C. Therefore, the operations of
/I//2 should be V2 = (GET, B, C}. The possible execution sequences may be
obtained from the formula above in several steps, as discussed below.

Formula (1) states that the possible execution sequences of/1//2 are those
sequences s2 of actions in V2 that satisfy the following:

(1) s2 is the projection onto V2 of some sequence in So x $1, and
(2) there is no sequence s' in ;~0 × $1 such that its projection onto V2 is equal to

s2. This implies that all possible execution sequences of the interacting
submodules M1 and 11//2 satisfy So (see Section 4).

We note that Figure 5 (assuming that the symbol X stands for PUT) shows the
possible sequences of So x $1. A transition diagram for the projection onto V2 is
obtained by replacing the P U T transitions by spontaneous transitions, since P U T
is not an element of V2. Considering only the accepting states and noting that the
states (1, 2) and (2, 1) {which are connected through a spontaneous transition)
may be combined, we obtain the diagram of Figure 7. Therefore, all execution
ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 1, J a n u a r y 1983.

On the Construction of Submodule Specifications 11

sequences that are possible according to this diagram satisfy the first condition
above.

Not all of these sequences, however, satisfy the second condition. The Second
condition may be checked using Figure 5, noting that it is a transition diagram
for So x $1 provided the accepting and nonaccepting states are interchanged. (Le.,
the states (3, 1), (3, 2), and (3, 3) are accepting; X stands for PUT, as before. We
note that this simple transformation is valid if the diagram is deterministic. If it
is nondeterministic, an equivalent deterministic diagram must first be found [9].)
Now we can check the second condition for all the execution sequences that are
possible according to Figure 7:

(1) The GET transition leading to the state (2, 2) is not allowed, since its
execution would be possible after an initial sequence of the form

(B (GET C + C GET))*.

Therefore, the whole sequence is a projection of a sequence of the form

(PUT B (GET C + C GET))*

that may lead to the state (3, 1) in Figure 5.
(2) The C transition leading to the state (1, 1) is not allowed, since such an

execution sequence is the projection of a sequence that may lead to the state
(3, 2) in Figure 5 (through the spontaneous transition from (1, 1)).

The only remaining sequences are cyclic executions of the form

(B GET C)*.

It is easy to check that these sequences satisfy the second condition. We have
therefore shown that the module M2 should be a 3-CYCLE module participating
in the actions B, GET, and C in a cyclic order.

It is shown in the next section that the specification $2 obtained by formula (1)
is a maximal one (including the largest number of execution sequences possible,
corresponding to the most general module) satisfying

po(S1 × $2) __C So (2)

and

each sequence s2 in $2 is compatible with $1. (3)

We say that s2 is compatible with $1 if and only if there is some sequence s such
thatp2(s) = s2 andpl(s) __ $1.

There are two important points to be noted here:

(1) The formula yields the most general module M2 such that all execution
sequences of M2 may actually occur during interaction with the submodule
M1 (this follows from condition (3)), and

(2) it is not guaranteed that all execution sequences specified for M0 will be
obtained by the two interacting modules M~ and M2 (see condition (2)).
Therefore, the construction of the submodule specification discussed in this
section is at the same time stronger and weaker than the approach of verifying
a possible implementation, discussed in Section 2.3.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

12 • P. Merlin and G. V. Bochmann

Let us explain the difference considering the B U F F E R implementation ex-
ample. The implementation verification checks that a given implementation
consisting of two 3-CYCLE submodules interacting in an appropriate manner
satisfies the specification of the B U F F E R modules. On the other hand, the
submodule construction approach shows that, given a partial implementation of
a B U F F E R module by a 3-CYCLE submodule 11//1, the remaining submodule
should also be a 3-CYCLE submodule with a particular coupling, and that this is
the most general submodule possible for this purpose. It does not show that the
submodule M2 so obtained, together with the given submodule M1, will realize all
execution sequences specified for the B U F F E R system; however, this may be
shown by verifying the obtained implementation.

Together, submodule construction and implementation verification allow one
to determine whether, with given specifications for the module Mo and one
submodule M1, there is a possible submodule M2 (or any group of submodules)
such that all these submodules will implement a system satisfying the specifica-
tion for M0. This is not possible by any other method (to the knowledge of the
author). One would apply the submodule construction first and then verify the
obtained implementation. If it is not a full implementation (i.e., does not realize
all execution sequences specified for Mo), then there is none with the given
module 11//1.

There may be two reasons why not all execution sequences of Mo can be
implemented with a given M~ and some suitable M2. One reason could be that
some execution sequences of $0 are incompatible (see above) with the specification
of 11//1. In the case of the BUFFER, for example, the specification for M~ given in
Figure 8a would be incompatible with the specification for Mo given in Figure 2.
Another possible reason is more subtle and involves the interaction between the
two submodules. An example is shown in Figures 8b through 8d. The specification
of M~ given in Figure 8b seems not to be in contradiction with the specification
of Figure 2. However, formula (1) leads to the following conclusion. Figures 8c
and 8d show transition diagrams for So × S~ and p2(So × S~), respectively.
Checking the second condition (as in the example above), it is easy to see that
the only possible execution sequence of M2 is a single B transition. Therefore, a
G E T action will never be executed, and, clearly, most B U F F E R execution
sequences will not be implemented.

As shown by the examples of Section 5, the specification of M2 obtained by the
construction approach may be "too general," in the sense that it includes
execution sequences that reduce the efficiency of the implementation. The
implementation verification may also be used to check which execution sequences
(if any) may be eliminated from the specification of the submodule M2, and
whether the obtained implementation is live and, in particular, has no deadlocks.

4. FORMAL DISCUSSION OF THE CONSTRUCTION OF SUBMODULE
SPECIFICATIONS

We assume in this section the model of interacting modules discussed in Section
2. We consider a module Mo consisting of n submodules Mi (i = 1, 2 n). We
assume that V is the set of all atomic actions that may occur in the system. An
interaction occurs when several submodules participate in the execution of one

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

On the Construct ion of Submodu le Speci f icat ions • 13

get.

(a) (b)

get

get b

d

get,X get

(c)

Fig. 8. Invalid implementation of a BUFFER. (a) Transition diagram of a module not compatible
with the BUFFER specification of Figure 2. (b) Possible specification for a submodule M1.
(c) Transition diagram for So × $1, where So and $1 are defined in Figures 2 and 8b, respectively.
(d) Transition diagram obtained from Figure 8c by projection, ignoring the X-transition

considered irrelevant.

atomic action. As above, we write Vi for the set of actions in which the module M/
participates, and pi (s) for the projection of an execution sequence s over V onto
the set of (relevant) actions Vi.

Considering, for the moment, two submodules interacting with one another,
but independent of any other part of the system, we may call this subsystem the
"coupled product" of these submodules. It is defined by the sequences of atomic
actions it realized, which are those sequences over (Vi U Vj) that satisfy the
specifications of both submodules. We write "S ix Sj" for this set of sequences
and have

Si × Sj= {sE (ViU Vj)*]pi(s) C_.SiApj(s) C_Sj}. (4)

By definition, the operation of forming a coupled product is transitive. This
corresponds to the fact that the order in which more than two submodules are

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

14 P. Merlin and G. V. Bochmann

combined into a system has no influence on the behavior of the system, as long
as the resulting coupling of submodules is the same.

We consider again the two approaches of implementation verification and
construction of submodule specification. In the case of implementation verifica-
tion, the traditional approach of program verification and consistency proofs for
multilevel specifications, an implementation of a module Mo (defined by Vo and
So) is given in terms of n interacting submodules Mi (defined by 17/and Si, i = 1,
2 n), and the condition

p0(S1 x 82 × " ' . x Sn-1 x Sn) ~- So (5)

and liveness are verified. Usually, this verification is done in two steps, proving,
first, the so-called "partial correctness" or "safeness," which is expressed by the
condition

po(S1 x 82 x . . . x Sn-1 X Sn) C So (6)

and, second, the liveness of the implementation. We assume that a "full imple-
mentation" of the specification So is required, that is, that the condition

po(S1 x $2 x . . . x Sn-1 X Sn) ~_ So (7)

(i.e., each sequence of So can be realized by the implementation) is satisfied.
Condition (7) does not necessarily imply liveness. A counterexample is given

by a B U F F E R module implemented by two submodules M1 and M2 defined by

$1 = (P U T (A B + C D))*

and

$2 = (A G E T B + C GET)* .

For this implementation, conditions (6) and (7) (and therefore condition (5)) are
satisfied, but the execution of the atomic action C leads to a blocked system state
where the only possible next operation is D for 3//1, but A or C for M2.

S t a t e m e n t about the Construct ion o f Submodu le Specifications. The approach
of constructing a submodule specification using formula (1) solves the following
problem. Given a module Mo (defined by Vo and So), submodules Mi (defined by
17/and Si, i -- 1, 2, . . . , n - 1), and the set Vn of atomic actions in which an
additional submodule Mn participates, formula (1) defines a (maximal) specifica-
tion S~ for M~ such that condition (6) is satisfied and for any sequence Sn over 17,
that is not in S, either

81 X 82 X . . o X Sn-1 X {Sn} = 0

(i.e., it is incompatible with the other submodules) or

p0(S1 X 82 X . - . X Sn-1 X {Sn}) (2~80

(i.e., it does not satisfy the safeness condition).

This problem may be reduced to the problem of only one given submodule. We
may define this submodule M~ by

S'1 =p~(Sa x :92 x . . . x Sn-1) (8)

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

On the Construction of Submodule Specifications 15

where p l projects onto a set of relevant actions which should include at least
those actions of 171 U V2 U . . . U 17, which contribute to So. We therefore consider
in the following only the case of one given submodule M1 and an additional
submodule M2 to be found.

PROPOSITION. Suppose that V2 C_ (Vo U VI), that is, that each operation of M2
is coupled either to Mo or to M~, or to both; then the sequences s2 in p2(So x S~)
are exactly those sequences over V2 for which

po(S1 × {s2}) N So # O;

that is, they realize (together with some sequence Sl E $1, and after projection
onto Vo) a sequence of Mo.

PROOF. The following statements are equivalent:

(1) The sequence s2 is inp2(So × $1).
(2) There exists a sequence s over V such that

(s E So x $1)/~ (p2(s) = s2).

(3) There exist sequences s over V and So over Vo such that

(po(s) = So)/k (p2(s) ---- 82) /k (p l (S) E S1).

(4) There exist sequences s over V and So over Vo such that

(po(s) - So) A (s ~ ($1 × (s 2 })) .

(5) There exists a sequence So over Vo such that

So Epo(S1 x {s2}). []

COROLLARY. The sequences s2 in p2 (So x St) are exactly those sequence~ over
112 for which po(S1 × {s2}) N So # 0 ; that is, they realize (together with some
sequences s~ E $1, and after projection onto Vo) a sequence that is not in So.

The above statement about the construction of submodule specifications using
formula (1) follows directly from this proposition and its corollary.

To make formula (1) usable, one needs some specification language for defining
the sets of possible execution sequences, such as $1 or So. In this paper we only
use FS-oriented specification. However, other specification languages (based on
event counts or predicates, for instance) could be used in the submodule construc-
tion approach.

5. APPLICATION TO PROTOCOL DESIGN

We show in this section how the constructive approach discussed in the sections
above may be applied to the design of protocols. In the case of two communicating
protocol submodules, the module structure of the system is shown in Figure lb.
We assume that the service to be provided by the protocol is given (this is the
specification So of the system), and also the service of the underlying system
layer, or "medium" (we call this specification Sa). If we assume that a specification
of one of the communicating protocol submodules is given (we call this specifi-
cation $4), then we have the situation where (n - 1) of n submodules (namely,

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

16 P. Merlin and G. V. Bochmann

M3 and M4; and n -- 3) are given for the implementation of a system, and the nth
submodule (namely, M2) is to be found. As discussed in Section 4, we may apply
formula (1) for this purpose, where $1 is defined by

S1 = p~ (S~ × St). (9)

5.1 The "Alternating-Bit" Protocol

As an example we consider the "alternating-bit" protocol (see, for example, [3]),
which provides data transmission in one direction over a half-duplex transmission
medium and recovers from detected transmission errors by retransmission.

Figure 9 shows the operations of the different submodules. Through the
operations P U T or G E T the modules using the communication system (not
shown in the figure) submit a data block or retrieve it, respectively. At any given
time, there is at most one data block in transit. The operationsdi and di (i = 0,
1) represent the sending and receiving, respectively, of an in~rmation frame
which contains the last data block submitted by the user and the "alternating
bit." Similarly, the operations ai and ai are the sending and receiving of an
acknowledge frame, which contains only a single bit. The operations de and ae

are a reception of a frame in error (full error detection is assumed to be performed
by the "medium" submodule; in practice, an error-detecting code would be used).

Figure 10a shows a diagram specifying the "medium" submodule. It defines a
half-duplex medium with only a single frame in transit. Figure 10b specifies the
"sender" protocol submodnle. It shows the value of the "alternating bit," which
changes its value for each new data block submitted by the user, and the
retransmission in the case that the right acknowledgment is not received.

To find the specification $2 of the "receiver" submodule we proceed as follows:
First, we determine $1 according to formula (9) using V1 = (P U T , a0, al, do, dl,
de}. This leads to the diagram of Figure 10c. We note that this diagram is
nondeterministic, reflecting the fact that a transmission error may or may not
have been detected at the interface between the "sender" and "medium" sub-
modules (the operations at this interface are not directly visible at this level of
detail, because they have been lost during the projection p~ of formula (9)).

For So we adopt the specification shown in Figure 10d. This service specification
{also discussed in [4]) is similar to the specification of the B U F F E R (see Figure
2), but it includes an additional do, d~ transition that ensures that a data frame
is correctly received before a data block is retrieved by the user. (We note that
the actions do and dl have the participation of all modules considered here: 1141,
M2, and M0). Now using formula (1), we obtain for the "receiver" M2 the
specification shown in Figure 10e. We note that this transition diagram includes
the execution sequences of the traditional alternating-bit receiver [3] shown in
Figure 10f. In addition to the latter, it allows for the sending of a negative
acknowledgment after the correct reception of a data block (see fat transitions in
Figure 10e). The resulting additional loops can only decrease the efficiency of the
protocol and are undesirable.

This example demonstrates the fact that the specification obtained by our
formula may be more general than required. As pointed out above, it finds the
most general specification possible. (General specifications of the alternating-bit
protocol are also considered in [15].) In order to fmd a more specific specification,
more appropriate for our purposes, we may delete some transitions from the

ACM Transact ions on Programming Languages and Systems, Vol. 5, No. 1, J a n u a r y 1983.

On the Construction of 17

I
put q p

sender

M4

,al ,ae IL ~

Submodule Specifications

dO,dl

M3

MO

medium

get

receiver

M2

dO,dl ,de , a l

Fig. 9. The structure of a communication subsystem involving the alter-
nating-bit protocol. The interactions between the submodules are indicated
in the following notation:

P U T submitting a data block;
GET retrieving a data block;
do, dl sending an information frame;
do, dl receiving an information frame;
de receiving an information frame in error;
ao, al sending an acknowledgment frame;
ao, al receiving an acknowledgment frame;
ae receiving an acknowledgment frame in error.

transition diagram of Figure 10e provided that the resulting FS machine, when
executed together with a submodule satisfying $1, will still provide all execution
sequences specified by So, which may be checked by an implementation verifi-
cation. In fact, the fat transitions in Figure 10e may be deleted, thus leading, after
simplification, to the transition diagram of Figure 10f.

5.2 A Protocol Without Sequence Numbering

A similar protocol without sequence numbering has been considered in the
literature. The "sender" submodule for this protocol is shown in Figure 11. (We
note that there is no alternating bit, and "a+" and " a - " stand for positive and
negative acknowledgment, respectively.) Doing a construction similar to that for
the "alternating-bit" protocol above, one obtains a specification $2 for the
"receiver" submodule that allows only a finite number of transitions. Therefore,
n o submodule M2 exists that, together with the "sender" submodule and the
underlying medium, will provide the required communication service shown in
Figure 10d. We note that this is a stronger result than showing (as done in [4])
that the sender submodule of Figure 10b does not operate correctly with a
particular "receiver." The conclusion is reasonable, since without sequence num-
bering the "receiver" submodule will never be able to distinguish between a new
data block and a retransmission.

5.3 Module Specifications with Parameterized Operations

In the service specification of Figure 10d, the transitions do and d~ were included
to ensure that the data block retrieved by the user is the same as the one

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

aA

a~

aO,ae

d]

(
(a)

)ut

(i~____

a] ,ae

dO

dO ,de

aO,al

dl,de

(c)

>
)ut

)
d al ,ae

)

do
t

(
a l ~ aO,ae

(b)

~ dO,
dl

~ei\A: °'~
/~ ~ dO)

(d)

Fig. 10. The alternating-bit protocol. (a) Specification of the underlying "medium."
(b) Specification of the "sender" submodule. (c) "Sender" and "medium" combined.
(d) Specification So of the service to be provided. (e) The resulting specification for

the "receiver" submodule. (f) The traditional "receiver" submodule.

On the Construction of Submodule Specifications 19

al

al

use

)
I dO,de

)

u s e

i dl ,de

(e) (f)

Figure 10 continued.

a+ la_,ae
Fig. 11. Specification of the "sender" submodule for a protocol without
sequence numbering.

submitted at the sending side. A more natural approach for ensuring this property
is the use of parameterized operations. This approach leads us beyond the FS
model used for the examples above. In this section, we consider the construction
of the alternating-bit "receiver" submodule in such an extended formalism.

The service operations for the protocol submodules are "PUT(x)" and
"GET(x)," where x is the value of a data block. We therefore consider as many
different "PUT" operations as there are possible different data blocks, and

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

20 • P. Merlin and G. V. Bochmann

'T

get(x) ~ put get

put
(a)

al ,ae ~ aO,al

~ aO,ae ~ d~e(X))aO,al
a l ~ a l 6 (~

(b) (c)

Fig. 12. The "alternating-bit" protocol specified with parameterized events. (a) Specification So of
service to be provided. (Note: x" ~ x; "PUT" and "GET" stand for events with any arbitrary
parameter values.) (b) Specification of the "sender" submodule. (c) "Sender" and "medium" combined.
(d) p2(So g $1). (Note: x " ~ x'.) (e) Resulting specification for the "receiver" submodule. (f)

Simplified "receiver" submodule.

similarly for "GET." The service specification So is shown in Figure 12a, where
the states (1) and (3) are single states, whereas (2(x)) is a parameterized state
which stands for a number of different states that are distinguished by different
data block values. Here a fat end of a transition arrow indicates that the
parameter values of the transition must correspond to the parameter value of the

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

On the Construction of Submodule Specifications • 21

spont.

i I a0 a0

aO

get

a0 get(x") q p--

• ~

9et

a0

spont.

get

(x') get

a0 a0
~T

get (x') get

a~ al

get (x')

spont.

(d)

Figure 12 contLnued.

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

C~

On the Construction of Submodule Specifications 23

al

get(x)
al

et(x)

:x')

(f)

Figure 12 continued.

state. For example, the transition arrow "PUT(x)" stands for a number of
different transitions from state (1) to different states (2(x)), one for each possible
data block value. This service specification ensures that the data block of a
"GET" operation is equal to the data block of the preceding "GET" operation.

Including the data block parameter in the "sender" submodule of Figure 10b
yields the "sender" shown in Figure 12b. The "medium" of Figure 10a may also
be easily extended to include data block parameters. Figure 12c shows the
specification S~ for the "sender" and the "medium," combined. We may now use
formula (1) to find a possible "receiver" submodule. The first step is the construc-

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

24 P. Merlin and G. V. Bochmann

tion ofp2(So × S1), which is shown in Figure 12d. By interchanging accepting and
nonaccepting states, this figure also defines p2 (S0 × $1), which specifies execution
sequences not allowed for the "receiver" submodule. We may obtain a state
diagram for the "receiver" from Figure 12d by the following considerations:

(1) Because of the spontaneous transition from state (2(x), 4) to state
(3, 5(x ")), no "ao" transition should be allowed after a sequence leading to the
state (2(x), 4). We therefore eliminate both "a0" transitions from state (2(x),
3(x)), and, similarly, the"a l" transitions from st-ate (5(x"), 3 (x")).

(2) An initial "GET(x)" transition is not allowed, since it may lead to the state
(3, 2(x)) through a state (2(x'), 2(x')) with a different x' and a transition labeled
"GET(x')."

(3) Sequences such as "de GET(x)" are not allowed, since they may lead to the
state (3, 3(x)) through a path similar to the one considered above.

(4) After a sequence leading to the state (1, 3(x)), a sequence such as
"ao de al" is not allowed, since it may lead to the state (3, 2(x)) through the
s~ tes (-1, 4), (2(x"), 5(x")), (2(x"), 3(x")), and (2(x"), 1).

Taking into account these constraints, we may rearrange the transition diagram
of Figure 12d into the "receiver" diagram shown in Figure 12e, where that part of
the diagram not leading to accepting states has not been shown. It is easy to see
that this diagram is equivalent to the diagram of Figure 12f. The latter is similar
to Figure 10e, but, in addition, it includes appropriate constraints for the data
block parameters.

6. CONCLUSIONS

This paper presents a method for constructing submodule specifications that may
be used in the stepwise refinement of system specifications. The formula under-
lying the method is very general. It provides the specification for an additional
submodule that, together with some already specified submodules, will provide
the specified service (or a subset of the execution sequences defined by the service
specification, if the complete service cannot be obtained with the submodules
already specified).

The formula defines the most general submodule possible (allowing for the
largest number of different execution sequences). This may not always be desir-
able. For instance, this leads to undesirable additional loops in the examples of
Figures 10 and 12. It would be interesting to find a formula that yields minimal
specifications for the additional submodule.

The problem of avoiding deadlocks and loops without progress has not been
addressed in this paper. Therefore, this constructive method should be comple-
mented with a more traditional verification method that checks that the imple-
mentation resulting from this submodule construction is a full implementation of
the specified service and is live and efficient (and, in particular, contains no
deadlocks).

Different specification languages may be used with the submodule construction
method. The use of an FS-oriented language has been demonstrated in this paper.
As an extension to the finite-state approach, an example involving parameterized
operations is discussed in the section above.
ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

On the Construction of Submodule Specifications • 25

In the case of an FS-oriented specification language, the number of states to be
considered during the submodule construction process may be very large. There-
fore, it would be interesting to automate the method for FS specification. A
system for the interactive design of modular systems (for example, communication
protocols) may be based on this method. In addition to finding the specification
of an additional submodule, when this is possible, the system may also give useful
information to the designer in those cases when no solution exists.

ACKNOWLEDGMENTS

We thank E. Cerny, J. Gecsei, S. Owicki, D. Stevenson, C. Sunshine, and the
referees for many helpful comments on earlier versions of this paper.

REFERENCES
1. BARTUSSEK, W., AND PARNAS, D.L. Using traces to write abstract specifications for software

modules. Rep. TR 77-012, University of North Carolina, 1977.
2. BOCHMANN, G.V. Distributed synchronization and regularity. Comput. Networks 3 (1979), 36-43.
3. BOCHMANN, G.V. Finite state description of communication protocols. Comput. Networks 2,

4/5 (Oct. 1978), 361-372.
4. BOCHMANN, G.V. Communication protocols and error recovery procedures. In Proceedings,

ACM Interprocess Communication Workshop. Oper. Syst. Rev. 9, 3 (Mar. 1975), 45-50.
5. CAMPBELL, R.H., AND HABERMANN, A.N. The specification of process synchronization by path

expressions. In Lecture Notes in Computer Science, vol. 16: Operating Systems. Springer-Verlag,
New York, 1974.

6. CERNY, E. Controllability and fault observability in modular combinational circuits. IEEE
Trans. Comput. C-27, 10 (Oct. 1978), 896-903.

7. CERNY, E., AND MARIN, M.A. An approach to unified methodology of combinational switching
circuits. IEEE Trans. Comput. Co26, 8 (Aug. 1977), 745-756.

8. HOARE, C.A.R. Communicating sequential processes. Commun. ACM21, 8 (Aug. 1978), 666-677.
9. HOPCROFT, J.E., AND ULLMAN, J.D. Formal languages and their relation to automata. Addison-

Wesley, Reading, Mass., 1969.
10. LEGUERNIC, P., AND RAYNAL, M. Eldments d'un langage adapt~ & la communication entre

processus. In Actes du Congr~s AFCET (Association Fran~aise pour la Cybernetique, Economique
et Technique), Nancy, France, Nov. 1980, pp. 667-676.

11. LUCKHAM, D.C., AND KARP, R.A. An axiomatic semantics of concurrent cyclic processes. Tech.
Rep., Artificial Intelligence Laboratory, Stanford University, Stanford, Calif., 1979.

12. MILNE, G., AND MILNER, R. Concurrent processes and their syntax. J. ACM 26, 2 (Apr. 1979),
302-321.

13. MILNER, R. Four combinators for concurrency. In ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, Ottawa, Canada, Aug. 18-20, 1982, pp. 104-110.

14. PRINOTH, R. Eigenschaften faerbbarber Petri-Netze. Tech. Rep. TRG, Gesellschaft fiir Mathe-
matik und Datenverarbeitung (GMD), Darmstadt, W. Germany, 1977.

15. SCHWARTZ, R.L.,ANDMELLIAR-SMITH, P.M. Temporallogicspecificationofdistributedsystems.
In Proceedings, 2nd International Conference on Distributed Systems, Paris, Apr. 8-10, 1981.

16. ZAFIROPULO, P., WEST, C.H., RUDIN, H., COWAN, D.D., AND BRAND, D. Towards analysing and
synthesizing protocols. IEEE Trans. Commun. Com-28, 4 (Apr. 1980), 651-661.

Received November 1979; revised June 1980 and November 1981; accepted November 1981

ACM Transactions on Programming Languages and Systems, Vol. 5, No. 1, January 1983.

